About NAMs !

get to learn more about alternatives to animal testing with Altertox first video content !

SHARE 

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn

Each year, an estimated 115 million animals are used for research and testing purposes worldwide. (source: Humane Society International).

However, faster, more accurate and ethical technologies exist to replace animal testing (photo: NASA; source: Source Tox 21 NIEHS ).

Aristotle was among the first to perform experimentation on living animals in IVth Century BC.

Nowadays, animal models are mainly used to study human diseases, develop drugs and treatments, but also to assess the safety of chemicals before they enter the market.

Every year in the EU, about 10 million animals are used for the first time in research facilities (source: European Commission).

Transgenic animals are even bred to study gene functions or the contribution of genetic alterations to the development of diseases.

Highly criticized by citizens and animal protection activitists, animal models often fail to accurately predict risks to human health due to interspecies differences (source: EU Barometer 2016).

A new drug can take 10-15 years and billion € to be developed, yet, 92% drugs that pass animal tests fail in human (source: US National Institute of Health)

This represents a tremendous waste of public money, time and hope for patients, and unnecessary animal suffering and killing.

 

New Approach Methods (NAMs), non-animal models are revolutionizing toxicology and healthcare.

NAMs include sophisticated tests using human cells and tissues, organoids, multiphysiological systems and organ-on-a-chip (in vitro methods) and advanced computer-modeling techniques (in silico models).

Able to mimic the functioning of an organ or an organism, such as this beating mini hearth (source: Science; photo: The Mendjan Lab), these models allow to better predict risks and benefits to human health.

These human centric approaches also allow to study genetic variation between humans to accelerate precision medicine and toxicology.

NAMs promise to advance towards precision toxicology by accelerating and improving the identification of harmful chemicals and by bridging the gap between humans and other species.

And as we still need to study animals, NAMs can also be created to replicate animal organ-on-a-chip.

NAMs can not only be used to safeguard human health, but also to protect animals and the environment.